14.7 Local Max/Min

Consider a surface $z=f(x, y)$.
Some Terminology:
A local maximum occurs at (a, b) if $f(a, b)$ is larger than all values "near" it (top of a hill).

A local minimum occurs at (a, b) if $f(a, b)$ is smaller than all values "near" it (bottom of a valley).

A critical point is a point (a, b) where both

$$
f_{x}(a, b)=0 \quad \text { AND } f_{y}(a, b)=0
$$

or a point where either partial does not exist.
Note: Local max/min occur at critical points!

Example:
Find the critical points of

$$
f(x, y)=3 x y-\frac{1}{2} y^{2}+2 x^{3}+\frac{9}{2} x^{2}
$$

Second Derivative Test

Let (a, b) be a critical point.
Find all second partials at (a, b)
($\left.f_{x x}(a, b), f_{y y}(a, b), f_{x y}(a, b)\right)$ and compute

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

1. If $\mathbf{D} \boldsymbol{>}$, then the concavity is the same in all directions.
(a) If $f_{x x}>0$, then it is concave up in all directions. So $f(a, b)$ is a local minimum.
(b) If $f_{x x}<0$, then it is concave down in all directions. So $f(a, b)$ is a local maximum.
2. If $\mathbf{D}<\mathbf{0}$, then the concavity changes in some direction.
We say (a, b) is a saddle point.
3. If $\mathbf{D}=\mathbf{0}$, the test is inconclusive (need a contour map)

Quick Examples:

1. $f(x, y)=15-x^{2}-y^{2}$, only critical point is $(0,0)$.

$$
\begin{aligned}
& f_{x x}=-2, f_{y y}=-2, f_{x y}=0, \\
& D=(-2)(-2)-(0)^{2}=4
\end{aligned}
$$

2. $f(x, y)=x^{2}+y^{2}$, only critical points is $(0,0)$.
$f_{x x}=2, f_{y y}=2, f_{x y}=0$, $D=(2)(2)-(0)^{2}=4$

3. $f(x, y)=x^{2}-y^{2}$ only critical points is $(0,0)$.
$f_{x x}=2, f_{y y}=-2, f_{x y}=0$,
$D=(2)(-2)-(0)^{2}=-4$

Example: Find and classify all critical points for

$$
f(x, y)=3 x y-\frac{1}{2} y^{2}+2 x^{3}+\frac{9}{2} x^{2}
$$

14.7: Global Max/Min

Consider a surface $f(x, y)$ over a particular region R on the $x y$-plane.

An absolute/global maximum over R is the largest z-value over R.

An absolute/global minimum over R is the smallest z-value over R.

Key fact (Extreme value theorem)
The absolute max/min must occur at either

1. A critical point, or
2. A boundary point.

Example: Let R be the triangular region in the $x y$-plane with corners at $(0,-1),(0,1)$, and $(2,-1)$. Over R , find the absolute max and min of

$$
f(x, y)=\frac{1}{4} x+\frac{1}{2} y^{2}-x y+1
$$

Step 1: Critical points inside region.
Step 2: Boundaries (the triangle has 3).
For each boundary, give equation find critical numbers of resulting one variable function. Label critical numbers on each boundary.

Step 3: Label corners.
Step 4: Evaluate the function at all points you found in steps 1,2 and 3.

Biggest output = global max
Smallest output = global min

Homework hints:

In applied optimization problems,
(a) Identify what you are optimizing (objective)
(b) Label Everything.
(c) Identify any given facts (constraints)
(d) Use the constraints and labels to give a 2 variable function for the objective.

HW Examples:

1. Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to $(4,2,0)$.

Objective: Minimize distance from (x, y, z) points on the cone to the point $(4,2,0)$.
2. Find the dimensions of the box with volume $1000 \mathrm{~cm}^{3}$ that has minimum surface area.

Objective: Minimize surface area.

